Wakaleo Consulting
Optimizing your software development

http://www.wakaleo.com
john.smart@wakaleo.com

Testing more efficiently with JUnit 4.4

- s " LT N o _*_A--u- e T CR L o b e e
iea Wa kaleo Consultlng
Optlrmzmg your software development process Copyright © 2008 Wakaleo Consulting Ltd

http://www.wakaleo.com/

Course Outline

e Outline

Introducing JUnit 4.4
Simple JUnit 4.4 tests
Fixture methods

Handling Exceptions
Using Parameterized Tests
Using Timeouts

Hamcrest asserts

JUnit Theories

-+~ Wakaleo Consulting

.' Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

Wakaleo Consulting
Optimizing your software development

http://www.wakaleo.com
john.smart@wakaleo.com

Introducing JUnit 4.4

Introducing JUnit 4.4
Fixture methods

Handling Exceptions
Using Parameterized Tests
Using Timeouts

Hamcrest asserts
JUnit Theories

™,

: !
2= Wakaleo Consulting
Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

http://www.wakaleo.com/

Introducing JUnit 4.4

e From JUnit 3.xto JUnit 4.4

JUnit 3.x JUnit 4.x
2 All classes derive from TestCase s Any class can contain tests
s @before, @beforeClass,
+ setUp() and tearDown() @after, @afterClass
+ Tests must be called testXXX() s Tests use the @Test annotation
s Timeouts

» Testing Exceptions
s Parameterized Tests

2 Theories

<="s Wakaleo Consulting

Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

Introducing JUnit 4.4

» Testing with JUnit 4.4

- Case study: A Tax Calculator

Business Rule #1:

Income up to $38,000 is taxed at 19.5% I

<=« Wakaleo Consulting

Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

Introducing JUnit 4.4

» Testing with JUnit 4.4

- The classes being tested:

zinterface=
TaxCalculator

+ calculatelncomeTax(income : double) : double

iy

TaxCalculatorimpl

+ calculatelncomeTax({income : double) : double

/< Wakaleo Consulting

Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

Introducing JUnit 4.4

» Testing with JUnit 4.4

- The class being tested:

public interface TaxCalculator ({
double calculatelIncomeTax (double income) ;

}

public class TaxCalculatorImpl implements TaxCalculator ({

@Override
public double calculateIncomeTax (double income) {

}

% Wakaleo Consulting
Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

Introducing JUnit 4.4

» Testing with JUnit 4.4

— The first business rule:

. Income up to $38,000 is taxed at 19.5%
Does not derive from w
import static org.junit.Assert.*; S
import org.Jjunit.Test;

public class foCalculatorImplTest { J d g
@Test indicz

public boid s
TaxCalculatorImpl taxCalculator = new TaxCalculatorImpl () ;

double income = 30000;

double expectedTax = income * 0.195;

double calculatedTax = taxCalculator.calculateIncomeTax(30000) ;

assertEquals("Tax below 38000 should be taxed at 19.5%",
expectedTax, calculatedTax, 0);

Unit test method name doesn't have to star

<=« Wakaleo Consulting
Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

Wakaleo Consulting
Optimizing your software development

http://www.wakaleo.com
john.smart@wakaleo.com

Fixture Methods

Introducing JUnit 4.4
Fixture methods
Handling Exceptions
Using Parameterized Tests
Using Timeouts

Hamcrest asserts
JUnit Theories

. 2

e

:)
.+~ Wakaleo Consulting

Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

http://www.wakaleo.com/

Fixture methods

» Setting up your tests, and tidying up afterwards

- In JUnit 3.x, you had setUp() and tearDown()
- In JUnit 4.x, you have:

« @BeforeClass - run before any test has been executed

« @Before — run before each test.

* @ATfter — run after each test

« @AfterClass — run after all the tests have been executed

=~ Wakaleo Consulting

Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

Fixture methods

» Setting up your tests

Business Rule #2:

Losses should not be taxed. I

-+~ Wakaleo Consulting

.' Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

Fixture methods

» Setting up your tests
- Using the @Before annotati

Losses should not be taxed.

public class TaxCalculatorImplTest {

TaxCalculatorImpl taxCalculator = null;

@Before
public void prepareTaxCalculator() ({
taxCalculator = new TaxCalculatorImpl () ;

! - Executed before ea

4=
| =

public void shouldUselLowestTaxRateForIncomeBelow38000 () {
double income = 30000;
double expectedTax = income * 0.195;
double calculatedTax = taxCalculator.
assertEquals("Tax below 38000 should

alculateIncomeTax (30000) ;
e taxed at 19.5%", expectedTax, calculatedTax, O0);

u xed () {
double calculatedTax = taxCalculator.calculateIncomeTax(-10000) ;
assertEquals("Losses should not be taxed", 0, calculatedTax, 0);

. - Wakaleo Consulting

Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

Fixture methods

» Tidying up afterwards

« Using the @After annotation

public class TaxCalculatorImplTest {
TaxCalculatorImpl taxCalculator = null;

@Before
public void prepareTaxCalculator() ({
taxCalculator = new TaxCalculatorImpl() ;

! Executed after each

@After
public static void tidyUp() {
taxCalculator = null;

}

Test
public void shouldUselLowestTaxRateForIncomeBelow38000 () {
double income = 30000;
double expectedTax = income * 0.195;
double calculatedTax = taxCalculator.calculateIncomeTax(30000) ;
assertEquals("Tax below 38000 should be taxed at 19.5%", expectedTax, calculatedTax, O0);

. - Wakaleo Consulting

Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

Fixture methods

o Setting up your test suite

« Using the @BeforeClass annotation

Executed once before any test is ex
The method must be static

public class TaxCalculatorImplTest ({

static TaxCalculatorImpl taxCalculator = null;

BeforeClass
public static void prepareTaxCalculator () {
taxCalculator = new TaxCalculatorImpl () ;

}

T
public void shouldUselowestTaxRateForIncomeBelow38000() {
double income = 30000;
double expectedTax = income * 0.195;
double calculatedTax = taxCalculator.calculateIncomeTax(30000) ;
assertEquals("Tax below 38000 should be taxed at 19.5%", expectedTax, calculatedTax, O0);

-+« YWakaleo Consulting
Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

Fixture methods

» Tidying up after your test suite
- Using the @AfterClass annotation

public class TaxCalculatorImplTest ({

static TaxCalculatorImpl taxCalculator = null;

BeforeClass
public static void prepareTaxCalculator () {
taxCalculator = new TaxCalculatorImpl () ;

}

T
public void shouldUselowestTaxRateForIncomeBelow38000() {

double income = 30000;

double expectedTax = income * 0.195;

double calculatedTax = taxCalculator.calculateIncomeTax(30000) ;

assertEquals("Tax below 38000 should be taxed at 19.5%", expectedTax, calculatedTax, O0);
}

@Test
public void lossesShouldNotBeTaxed () ({

double calculatedTax = taxCalculator.calculateIncomeTax(-10000) ;
assertEquals("Losses should not be taxed", 0, calculatedTax, O0);

- Wakaleo Consulting
Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

Fixture methods

» Tidying up afterwards
- Using the @After annotation

public class TaxCalculatorImplTest {
static TaxCalculatorImpl taxCalculator = null;

@BeforeClass
public static void prepareTaxCalculator () '

taxCalculator = new TaxCalculator Eyxecuted once after every test has been

}

public static void tidyUp() {
taxCalculator= null,

}

QTest
public void shouldUselLowestTaxRateForIncomeBelow38000() {
double income = 30000;
double expectedTax = income * 0.195;
double calculatedTax = taxCalculator.calculateIncomeTax(30000) ;
assertEquals("Tax below 38000 should be taxed at 19.5%", expectedTax, calculatedTax, O0);

.»»= YWakaleo Consulting
Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

Wakaleo Consulting
Optimizing your software development

http://www.wakaleo.com
john.smart@wakaleo.com

Handling Exceptions

Introducing JUnit 4.4
Fixture methods

Handling Exceptions
Using Parameterized Tests
Using Timeouts

Hamcrest asserts
JUnit Theories

. 2

e

:)
.+~ Wakaleo Consulting

Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

http://www.wakaleo.com/

Handling Exceptions

» Testing for expected Exceptions

- Use the expected parameter of the @Test annotation

<=« Wakaleo Consulting

Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

Handling Exceptions

» Testing for excepted Exceptions

— A practical example: income tax rates can change each year.
So we need to specify the year in our TaxCalculator.

- If an invalid year is provided, the class throws an
InvalidYearException.

Business Rule #3:

The tax year cannot be in the future. I

/= Wakaleo Consulting

Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

Handling Exceptions

» Testing for excepted Exceptions

— The TaxCalculator interface now looks like this:

public interface TaxCalculator ({
double calculateIncomeTax(double income, int year) throw% analidYearException; }

} —

If the year is invali
InvalidYearE:

.'_ Wakaleo Consulting

Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

Handling Exceptions

» Testing for excepted Exceptions

- Using the expected parameter

« A simple way to test that an Exception is thrown

The test will only succeed if this excepm

@Test (expected=InvalidYearException.class)
publi i i
DateTime today = new DateTime() ;
int nextYear = today.getYear() + 1;
double income = 30000;
taxCalculator.calculateIncomeTax (income, nextYear) ;

You still need to declare the ex"
it isn't a runtime exc

<
on
—

InvalidYearException { }

}

.'_ Wakaleo Consulting

Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

Handling Exceptions

 Limitations of this approach

- The traditional approach is better for:

« Running assertions against the exception
e.g. Checking the Exception message

Make sure the
exception was t,, r

@QTest R e e 7
public void exceptionShouldIncludeAClearMessage() throws InvalidYea-T.... _.ion {
try {

taxCalculator.calculateIncomeTax (50000, 2100) ;

ail("calculateIncomeTax () should have thrown an exception."); }
} ca i i d) {
- 0
"No tax calculations available yet for the year 2100");
}

}

= .
% Wakaleo Consulting
. Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

Handling Exceptions

 Limitations of this approach

- The traditional approach is better for:

« Checking application state after the exception
e.qg. Withdrawing money from a bank account

@Test Make sure the

public void failedWithdrawlShouldNotDebitAccount () { :
Account account = new Account(); exceptlon was t__
account.setBalance (100) ; o
try {
account.withdraw(200) ;
ail("withdraw() should have thrown an InsufficantFundsException.");
} cagh (InsufficantFundsException e) {
assertEquals ("Account should not have been debited",
100.0,account.getBalance() ,0.0) ;

}

}

.'_ Wakaleo Consulting

Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

Wakaleo Consulting
Optimizing your software development

http://www.wakaleo.com
john.smart@wakaleo.com

Using Parameterized Tests

Introducing JUnit 4.4

Fixture methods

Handling Exceptions

Using Parameterized Tests
Using Timeouts

Hamcrest asserts
JUnit Theories

. 2

e

:)
.+~ Wakaleo Consulting

Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

http://www.wakaleo.com/

Using Parameterized Tests

e Parametrized tests:

- Run several sets of test data against the same test case
- Help reduce the number of unit tests to write
- Encourage developers to test more thoroughly

=~ Wakaleo Consulting

.' Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

Using Parameterized Tests

e Parametrized tests:

- Example: Calculating income tax

Taxable Income Tax rate

up to $38,000 19.5 cents
$38,001 to $60,000 inclusive 33 cents
$60,001 and over 39 cents

\%-, Wakaleo Consulting

.' Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

Using Parameterized Tests

e Parametrized tests
- What you need:

mcome \V(ear \IE&pected Tax\
$0.00 2007 $0.00
Some teSt data $10,000.00 2007 $1,950.00
A test class with matching fields... LI .
$38,000.00 2007 $7,410.00
and some tests $38,001.00 2007 $7,410.33
$40,000.00 2007 $8,070.00
and an annotation $60,000.00 2007| $14,670.00
$100,000.00 2007 $30,270.0g
RunW ith(Parameterized.class /
TaxCalculationTest
S
- income : dnublea

- year :int -f—
- expectedTax : double -
+ TaxCalculationTest{year : int, income : double, expectedTax : double)
+ shouldCalculateCorrectTax()

"+~ Wakaleo Consulting

.' Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

Using Parameterized Tests

o

» Parameterized tests This is 2 parameterize i

: The @Parameters a
- How does it work? indicates the te

i e

l @RunWith (Parameterized.class) J Income Year Expected Tax

publicazi::ie'::xCalculationTest { $0.00 2007 $0.00

public static Collection<Object[]> data() { $10,000.00 2007 $1,950.00

return Arrays.asList(new Object[][] {

/* Income Year Tax */ $20,000.00 2007 $3,900.00
{ 0.00, 2006, 0.00 }, { 10000.00, 2006, 1950.00 1},

{ 20000.00, 2006, 3900.00 }, { 38000.00, 2006, 7410.00 }, $38’000'OO 2007 $7’410'OO
{ 38001.00, 2006, 7410.33 }, { 40000.00, 2006, 8070.00 }, $38’001_00 2007 $7,410_33

{ 60000.00, 2006, 14670.00 }, { 100000.00, 2006, 30270.00 }, });

$40,000.00 2007 $8,070.00
pri ; = $60,000.00 2007 $14,670.00
private int year;
private double expectedTax; $1OO’000'00 2007 $30’270'OO
public TaxCalculationTest (double income, int year, double expectedTax) {
/ this.income = income; X
this.year = year; 2 ...
this.expectedTax = expectedTax; e Z 7
) leg constructor t
| emest _ _ fleZ[ds from th
4 D
- L0 . —
double calculatedTax = calculator.calculateIncomeTax (income, year); o /o e,
} assertEquals (expectedTax, calculatedTax, 0.0); — The unit teStS use
} L]
from these fi

.

-+« YWakaleo Consulting
Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

Using Parameterized Tests

e Parametrized tests

- The @RunWith annotation and the Parameterized runner

@RunWith (Parameterized.class) i

o,
W~~~ 7 X

Tells Junit to run this/%ﬁ
parameterized t

e

<=« Wakaleo Consulting

. Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

Using Parameterized Tests

e Parametrized tests

- The @Parameters annotation and the test data

It tram

The test data is a 2-dimentiona%

Gz e

@QRunWith (Parameterized.class)
public class TaxCalculationTest {
@Parameters

public static Collection<Object[]> data() {
i ject 11 {

L3 I e)

/* Income Year Tax */
{ 0.00, 2006, 0.00 }, { 10000.00, 2006, 1950.00 },

{ 20000.00, 2006, 3900.00 }, { 38000.00, 2006, 7410.00 },

{ 38001.00, 2006, 7410.33 }, { 40000.00, 2006, 8070.00 },

{ 60000.00, 2006, 14670.00 }, { 100000.00, 2006, 30270.00 }, }):

- Wakaleo Consulting

]

.' Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

Using Parameterized Tests

e Parametrized tests

- The member variables and the constructor

V7

A member variable for “
element of tesi da}_...'.-— JUnit initialises instances of this class by p
y rows of test data to this construct

private int year;

private double income;
private double expectedTax;

this.income = income;

this.year = year;
this.expectedTax = expectedTax;

}

.'_ Wakaleo Consulting

Optimizing your software development process

Copyright © 2008 Wakaleo Consulting Ltd

Using Parameterized Tests

* The unit tests

— The unit tests use the member variables to check the tested

class.
The input fields comes frcy‘
the test data

&z 7~

@QTest

public void shouldCalculateCorrectTax() throws InvalidYearException {
TaxCalculator calculator = new TaxCalculatorImpl () ;
double calculatedTax = calculator.calculateIncomeTax(income{ year) ; }

assertEquals(exFeetedEaxT—eaﬁculatedTax, 0.0);
}

The correct result is stored in %
This is compared with the cal

el

b

7+~ Wakaleo Consulting

Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

Using Parameterized Tests

* Running parameterized tests in Maven

$ mvn test -Dtest=TaxCalculationTest

.

77/ %
—/I”

Running com.wakaleo.jpt.junit.lab4.taxcalculator.impl. TaxCalculation 1es ""
Tests run: 8, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.116 sec

Results :

Tests run: 8, Failures: 0, Errors: 0, Skipped: 0

[INFO]
[INFO] BUILD SUCCESSFUL
[INFO]
[INFO] Total time: 1 second ——nenddl———

[INFO] Finished at: Sat Mar 15 20:26:41 GMT 2008 8 test cases are execute 9"
[INFO] Final Memory: 6M/78M

[INFO] _“"

-
i o “
,-" = s _ E e) e ¢ .‘ ol § . T P Ty

Dpt:rrﬁzmg your software devdupment process : Copyright © 2008 Wakaleo Consultlng Ltd

- - | - b

Using Parameterized Tests

 Running parameterized tests in Eclipse

, e
v @ sreftest/java Bun As ¥ o 1Runon Ser“!.;!'erI Shif‘t+AIt+}EIR =
P B com.wakaleo jpt.junit.labl taxcalc Debug As v Ju 2 junit Test Shift+AIt+]}(T i
P B com.wakaleo jpt.junit.lab2 taxcalecl Profile As . oo .
I B com.wakaleo jpt.junit.lab3.bank - Pen Rul--lialog... B
P B com.wakaleo jpt.junit.lab3 taxcalcl :::f:te v S
- 1 com.wakaleo.jpt.junit.lab4d taxcalce Compare With v
b)] TaxCalculationTest java Replace With 3
b [J] TaxCalculatorimplTest java Restore from Local History...
P =4 JRE System Library [java-6-sun-1.6.0, Web Services i
[P B\ Maven Dependencies Properties We run a Single t
P = src o
S I\

e

' -+« YWakaleo Consulting

.' Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

Using Parameterized Tests

4L " r-_t_

* Running parameterized *--*~ "~ ="~

The test is run m[J/ItipIe times

< [srcftestfjava | (4] — v = 4
P com.wakaleo.jpt.junit.labl taxcalculz| [Z; Problems (@ Tasks (Ifl Properties r*' - -~ - 4 Data Source Explorer (IE] Snippets (ﬂu_'l.ll'lit o =0
P wakaleo jpt.junit.lab2.t lculz| Fini =
com.wakaleo jpt.junit.lab2 taxcalculé Finished after 0.181 seconds £ 5@ E~ ~

P B com.wakaleo jpt.junit.lab3.bank

B com.wakaleo.jpt junit.lab3 taxcalcul: L L = Bt @ Failures: 0

~ B com.wakaleo,] t.'unit.labd.taxcalculé o _ = s
ol -1 ~ i com.wakaleo jpt junit.labd taxcalculator.impl TaxCalculation = Failure Trace ==
b)] TaxCalculationTest java =
> @ ol I . = Ht [0]

TaxCalculatorimplTest.java
P I el shouldCalculateCorrectTax[0]
P =4 JRE System Library [java-6-sun-1.6.0.0:

IRE Sy ry i < Ba[1]

P B\ Maven Dependencies
P = src
I (= target-eclipse

el shouldcalculateCorrectTax[1]
b Eil [2]
b EE (3]
bl [4]
b el [S]

b Eitl [6]
MEE [7] /

T4 porm.xml

Wakaleo Consulting

.' Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

Wakaleo Consulting
Optimizing your software development

http://www.wakaleo.com
john.smart@wakaleo.com

Using Timeouts

Introducing JUnit 4.4
Fixture methods

Handling Exceptions
Using Parameterized Tests
Using Timeouts

Hamcrest asserts
JUnit Theories

. 2

e

:)
.+~ Wakaleo Consulting

Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

http://www.wakaleo.com/

Using Timeouts

e Simple performance tests

- Use the timeout parameter of the @Test annotation

@Test (timeout=100)

public void shouldCalculateCorrectTax() throws InvalidYearException ({
T xCalculator calculator = new TaxCalculatorImpl () ;
do -~ 'e calculatedTax = calculator.calculateIncomeTax (income, year);
ass—-— “quals(expectedTax, calculatedTax, 0.0);

. . .

Test will fail afte

- Wakaleo Consulting

]

.' Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

Using Timeouts

e Simple performance tests

- Sometimes, you need to repeat operations for good results...

@Test (timeout=1000)
public void shouldCalculateCorrectTax() throws InvalidYearException ({
for(int i=1l; i < 50; i++) {
=—new TaxCalculatorImpl () ;
double calculatedTax = calculator.calculateIncomeTax (income, year);
assertEquals (expectedTax, calculatedTax, 0.0);

Time 50 calcul
more realisti

777 7

- Wakaleo Consulting

.' Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

Using Timeouts

e Simple performance tests
- The test will fail if it takes more than the specified time

= @Test (timeout=100) s year: int
public void shouldcCalculateCorrectTax() throws InvalidYearException { '
for(int 1=1; 1 = 100; 1++) {
TaxCalculator calculator = new TaxCalculatorImpl(); © © TavraleulatinnDarfTactl s
double calculatedTax = calculator.calculateIncomeTax(income, ye .
assertEquals(expectedTax, calculatedTax, 0.0); s TeSt tlmed OUt

o expectedTax : double

1 =]
| [+ € C

(4]
Problems (E Tasks (Ifl Properties (4-?&- Servers mﬂ Data Source Explorer ﬂ'\[j Snippets (n‘u |Unit &3 = O

ished after 0.187 seconds L g8 BF % e ¥

wns: /8 8 Errors: 1 8 Failures: 0 Y AN

= Fai -+
Failure Trace

gt com.wakaleo jpt junit.lab4 taxcalculatorimpl TaxCalculationPerflest =
> el [0] [11 java lang.Exception: test timed out after 100 milliseconds J

=] shouldcalculate CorrectTax[0]

o

.« Wakaleo Consulting
Copyright © 2008 Wakaleo Consulting Ltd

Optimizing your software development process

Using Timeouts

 Integration tests, not Unit tests

- Use with care:

* Run them with your integration tests, not with your unit tests
« If your criteria are too demanding, they may fail unexpectedly:

- Machine load
- Processor speed

\%-, Wakaleo Consulting

.' Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

Wakaleo Consulting
Optimizing your software development

http://www.wakaleo.com
john.smart@wakaleo.com

Hamcrest asserts

Introducing JUnit 4.4
Fixture methods

Handling Exceptions
Using Parameterized Tests
Using Timeouts

Hamcrest asserts
JUnit Theories

. 2

e

:)
.+~ Wakaleo Consulting

Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

http://www.wakaleo.com/

Hamcrest asserts

 Traditional JUnit 3.x asserts are hard to read:

- Parameter order is counter-intuitive for English-speakers

e x=10 is written | @8ssertEquals(10, x); '

- The statements don't read well for English-speakers

« “Assert that are equal 10 and x”
- Default error messages are sometimes limited:

String color = "yellow";
assertTrue(color.equals("red") || color.equals("blue"));

= Failure Trace

10 java.lang.AssertionError:

= at com.wakaleo.jpt.junit.labs.taxcalculato

= .
% Wakaleo Consulting
Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

Hamcrest asserts

 JUnit 4.4 introduces the assertThat statement

- Rather than writing:

import static org.junit.Assert.*;

assertEquals (expectedTax, calculatedTax, 0);

— You can write

import static org.hamcrest.Matchers. *;

assertThat (calculatedTax, is(expectedTax));

\%-, Wakaleo Consulting

.' Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

Hamcrest asserts

* Advantages of the assertThat statement:

— More readable and natural assertions

assertThat (calculatedTax, is(expectedTax));

s = e = = == e ———.

“Assert that calculated tax is [the same as] e:

7

= Failure Trace

String color = "red"; : _
— | assertThat(color, is("blue")); 10 java lang.AssertionError:

Expected: is "blue"

got: "red"

String[] colors = new String[] {"red",'"green","blue"};
String color = "yellow";
assertThat(color, not(isIn(colors)));

= .
% Wakaleo Consulting
Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

Hamcrest asserts

« Simple equality tests

Assert that...is

String color = "red";
assertThat(color, is("red"));

Assert that...equalTlo

String color = "red";
assertThat(color, equalTo("red"));

Assert that...not

String color = "red";
assertThat(color, not("blue"));

\%-, Wakaleo Consulting

.' Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

Hamcrest asserts

* More sophisticated equality tests

Assert that...is one of

String color = "red";
assertThat(color, isOneOf('"red",”blue”,”green”)) ;

Assert that...is a class

List myList = new ArrayLlist();
assertThat (myList, is(Collection.class)) ;

\%-, Wakaleo Consulting

.' Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

Hamcrest asserts

» Testing for null values

= Failure Trace

nOtNUllvalue() 0 java.lang.AssertionError:

Expected: is not null

String color = "red";

assertThat(color, is(notNullValue())): got: null

|
assertNotNull (color) ; = Failure Trace BC

nullValue()

o
=]

java.lang.AssertionError:

at com.wakaleo.jpt.junit labs taxcalculator.impl TaxCalculatorimplTest

i .

String color = null;
assertThat(color, is(nullValue()))

assertNull (color) ; '

- Wakaleo Consulting
Copyright © 2008 Wakaleo Consulting Ltd

Optimizing your software development process

Hamcrest asserts

» Testing with collections

hasltem()

List<String> colors = new ArrayList<String>() ;
colors.add("red") ;

colors.add("green") ;

colors.add("blue") ;

assertThat(colors, hasItem('"blue'"));,

hasltems()

assertThat(colors, hasItems ('"red”,”green”)); '

hasltemsinArray()

String[] colors = new String[] {"red","green","blue"};
assertThat(colors, hasItemInArray("blue"));

. 34

% Wakaleo Consulting
Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

Hamcrest asserts

» Testing with collections
hasValue()

Map map = new HashMap() ;
map.put ("color", "red");
assertThat (map, hasValue("red")) ;

Combined matchers

List<Integer> ages = new ArrayList<Integer>() ;
ages.add(20) ;
ages.add(30) ;
ages.add (40) ;
assertThat(ages, not(hasItem(lessThan(18))));

“This list does not have an item that is le

L

. 34

/= Wakaleo Consulting

Copyright © 2008 Wakaleo Consulting Ltd

Optimizing your software development process

Hamcrest asserts

 But don't go overboard...
- Which is better? This?

int value = 15;
assertThat(value, allOf(greaterThanOrEqualTo(10),
lessThanOrEqualTo(20))) ;

int value = 15;
assertTrue("Value should be between 10 and 20",
value >= 10 && value <= 20);

/< Wakaleo Consulting

Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

Wakaleo Consulting
Optimizing your software development

http://www.wakaleo.com
john.smart@wakaleo.com

JUnit Theories

Introducing JUnit 4.4
Fixture methods

Handling Exceptions
Using Parameterized Tests
Using Timeouts

Hamcrest asserts
JUnit Theories

. 2

e

:)
.+~ Wakaleo Consulting

Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

http://www.wakaleo.com/

JUnit 4 Theories

* JUnit 4 theories — testing multiple data sets
- With JUnit 4 theories, you can

» Test large combinations of data values in a single method
 Document what you think your code should do a little better

- Atheory is a statement that is true for many data sets.

 Instead of “shouldDoThis” or “shouldDoThat”, we say “isThis” or
“isThat”.

=~ Wakaleo Consulting

.' Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

JUnit 4 Theories

* A simple example — testing tax rates
- 2007 and 2008 Tax Rates

Taxable Income Tax rate

up to $38,000 19.5 cents |
$38,001 to $60,000 inclusive 33 cents
$60,001 and over 39 cents

In 2007 and 2008, income up to $38 000 is taxed at 19.5% I

=~ Wakaleo Consulting

.' Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

JUnit 4 Theories

* A simple example — the business rule

In 2007 and 2008, income up to $38 000 is taxed at 19.5% I

/ Test data will be injected heB

— This becomes our theory. We express N,\ [

[@Theory }{ We use the @Theory a

public void incomeUpTo38000IsTaxedAtLowestRate (double income,
int year) ({

assumeThat (year,anyOf (is (2007) ,is(2008))) ; 7
assumeThat (income, lessThanOrEqualTo(38000.00)) ; Only applles
WW— ; for 2007 and
double calculatedTax 2008 and for
= alculater . calculateneomeTax (income, year); incomes t
are un

~ What do we expect?] Does it match?

..»"« YWakaleo Consulting

Op'rlr'mzmg your software development process Copyright © 2008 Wakaleo Consulting Ltd

JUnit 4 Theories

« JUnit 4 theories — some explanations

- @Theory — declares a method that tests a theory.

- A @Theory method has parameters, which are used to
Inject test data.

- assumeThat() - Hamcrest-style expression used to filter out
the test data values that you are interested in for that theory.

=~ Wakaleo Consulting

Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

JUnit 4 Theories

* A simple example — and now for some test data
- Test data is indicated by the @DataPoint annotation:

@DataPoint public static int YEAR 2008 = 2008; '

- Datapoints are public static variables of different types:

@DataPoint public static int YEAR 2007 =
@DataPoint public static int YEAR 2008 =
@DataPoint public static double INCOME 1 = 5
@DataPoint public static double INCOME 2 = 1000.0;
@DataPoint public static double INCOME 3 =

/= Wakaleo Consulting

Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

JUnit 4 Theories

* A simple example — and now for some test data

- Datapoint values are injected into the theory methods
according to their type:

@DataPoint public static int YEAR 2007 = 2007;
@DataPoint public static int YEAR 2008 = 2008;
@DataPoint public static double INCOME 1 0.0;

@DataPoint public static double INCOME:2 = 1000.0;
@DataPoint public static double INCOME 3 =

@Theory \\?
public void incomeUpTo38000IsTaxedAtLowestRate(doubl in {
}

e .
% Wakaleo Consulting
. Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

JUnit 4 Theories

» Datapoints — some explanations

- @Datapoint values are injected into the @Theory methods
according to their type.

e E.g. If you have 20 integer data points, they will all be sent to every
integer @Theory method parameter.

- You use assumeThat() expressions to filter out the values
that you aren't interested in.

- You should apply assumeThat() expressions to every
parameter.

e A

.+~ Wakaleo Consulting

Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

JUnit 4 Theories

* A simple example — the full test case

@RunWith (Theories.class) e
public class TaxCalculationTheoryTest ({ { Test data (aS mUCh as yo

/@ﬁataPoint public static int YEAR 2006 = 2006; \\\fé;;;;;sz:/_///~//””/’
@DataPoint public static int YEAR 2007 = 2007;
@DataPoint public static int YEAR 2008 = 2008;
@DataPoint public static double INCOME 1 = 0;
@DataPoint public static double INCOME 2 = 1000;

@DataPoint public static double INCOME 10= 38000;
@DataPoint public static double INCOME 14= 50000;
@DataPoint public static double INCOME 15= 60000;

Eheor ,,/l/’i/ll//ﬁeo YI= | atl@

public void incemsBpT SouvuisTaxedAtLowestRate (double income,int year) {
assumeThat (year,anyOf (is(2007) ,is (2008))) ;
assumeThat (income, lessThanOrEqualTo(38000.00)) ;
TaxCalculator calculator = new TaxCalculatorImpl() ;
double calculatedTax = calculator.calculateIncomeTax (income, year);
double expectedTax = income * 0.195;

System.out.println("year = " + year
+ ", income=" + income
+ 7, calculated tax=" + calculatedTax)

assertThat (expectedTax, is(calculatedTax)) ;

}

—/Tog messagéfof' CC

- Wakaleo Consulting

Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

JUnit 4 Theories

* A simple example — running the tests

- Eclipse will run a single test for each @ T'heory method

Finished after 0.495 seconds g® B @ e ~
Runs: 1/1 B Errors: 0 B Failures: 0 -
Ht com.wakaleo jpt.junit.lab7 taxcalculator.impl.TaxCalculationTheoryTest = Failure Trace ==

=~ Wakaleo Consulting

.' Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

JUnit 4 Theories

* A simple example — running the tests

- However the @Theory will actually be executed once for
each combination of corresponding datapoint values, e.g.

@DataPoint public static double INCOME 1 = O0;

@DataPoint public static double INCOME 2 = 1000;
@DataPoint public static double INCOME 3 = 5000;
@DataPoint public static double INCOME 4 = 8000;
@DataPoint public static double INCOME 5 = 15000;
@DataPoint public static double INCOME 6 = 25000;
@DataPoint public static double INCOME 7 = 35000;
@DataPoint public static double INCOME 8 = 37000;
@DataPoint public static double INCOME 9 = 37999;
@DataPoint public static double INCOME 10= 38000;
@DataPoint public static double INCOME 12= 38001;

| @DataPoint public static double INCOME 13= 40000; |

@DataPoint public static double INCOME 14= 50000;
@DataPoint public static double INCOME 15= 60000;

- Wakaleo Consulting

]

Optimizing your software development process

@DataPoint public static int YEAR 2006

2006;

@DataPoint public static int YEAR 2007
@DataPoint public static int YEAR 2008

2007;
2008;

Copyright © 2008 Wakaleo Consulting Ltd

JUnit 4 Theories

* A simple example — running the tests

- However the @Theory will actually be executed once for
each combination of corresponding datapoint values, e.g.

El console 2 ® % G Eﬁ o B~ -
<terminated= TaxCalculationTheoryTest [JUnit] fusrlibfjvm/java-6-sun-1.6.0.0
year = 2007, income=0.0, calculated tax=0.0 []
year = 2008, income=0.0, calculated tax=0.0

year = 2007, i1ncome=1000.0, calculated tax=195.0

year = 2008, i1ncome=1000.0, calculated tax=195.0

year = 2007, 1ncome=5000.0, calculated tax=975.0

year = 2008, 1ncome=5000.0, calculated tax=975.0

year = 2007, 1ncome=8000.0, calculated tax=1560.0

year = 2008, 1ncome=8000.0, calculated tax=1560.0

year = 2007, 1ncome=15000.0, calculated tax=2925.0

year = 2008, 1ncome=15000.0, calculated tax=2925.0

year = 2007, 1ncome=25000.0, calculated tax=4875.0

year = 2008, 1ncome=25000.0, calculated tax=4875.0

year = 2007, 1ncome=35000.0, calculated tax=6825.0

year = 2008, 1ncome=35000.0, calculated tax=6825.0

year = 2007, 1ncome=37000.0, calculated tax=7215.0

year = 2008, i1ncome=37000.0, calculated tax=7215.0

year = 2007, 1ncome=37999.0, calculated tax=7409.805

year = 2008, 1ncome=37999.0, calculated tax=7409.805

year = 2007, 1ncome=33000.0, calculated tax=7410.0

year = 2008, 1ncome=38000.0, calculated tax=7410.0

(4] D)

v +« YWakaleo Consulting

Optimizing your software development process

Copyright © 2008 Wakaleo Consulting Ltd

To learn more...

JAVA
POWER Too Ls o crum S hitpd/www.wakaleo.com

The Java Power Tools Bootcamp

Code better - Code faster - Code smarter

The Java Power Tools B np isa prehensive, i tive and hands-on
workshop covering best-of-breed open source tools and techniques for Agile
Development in Java. Leam how to optimize your development process, hone
your programming skille and know-hew, and ultimately produce batier
software. And have fun while you're doing it!

S FOGL HEAAD D R

Ly s Pt

Course Objectives

Students will come awsay from thisworkshap with a solid undarstanding of how they can improve their development
practices back in the real world, as well as an abundance of pratical tips and tricks that they can use in their day-to-day
work. Motably, after the course, students will:

v Have a practical understanding and exparience of Maven 2, and be abla to determine for themsalvesif it is
suitable for their project or organisation.
v Understand the issues around dependency management in Javadevelopment, and be able to implement

STOOL HAMNMOA YRNaU

dedlarative dependency management in a corporate environment using both Maven and Ant.

v Know how towrite effective unit tests, and undarstand how to use unit testing practices to write more reliable code
fastar.

v Ba able to wiite automated database and web interface tasts.

v Understand how to use code quality and test coverage metrics to improve your code, and understand what the

wvarious metrics can tell you, and also what they can't.

Have a solid working knowled ge of Subversion in the real world,

OgREILLYn John rsrgm" Smart Knot-\l how toset up aworking Glontinuous Integrau’cn semar, complete with automated builds, tests, code quality

audits and reports, and automatic deployment to an intagration server

<

by

Wakaleo Consulting

ftware development process Copyright © 2008 Wakaleo Consulting Ltd

Thank you

e Questions?

.z~ Wakaleo Consulting

Optimizing your software development process Copyright © 2008 Wakaleo Consulting Ltd

